IMP.bff
Loading...
Searching...
No Matches
Functions
DecayRoutines.h File Reference
#include <IMP/bff/bff_config.h>
#include <cmath>
#include <numeric>
#include <iostream>
#include <vector>
#include <algorithm>
#include <string.h>
Include dependency graph for DecayRoutines.h:

Go to the source code of this file.

Functions

IMPBFF_BEGIN_NAMESPACE int mod_p (int a, int n)
 Compute the modulo of a number with respect to a positive integer.
 
IMPBFFEXPORT void decay_rescale (double *fit, double *decay, double *scale, int start, int stop)
 Scale model function to the data (old version).
 
IMPBFFEXPORT void decay_rescale_w (double *fit, double *decay, double *w_sq, double *scale, int start, int stop)
 Scale model function to the data (with weights).
 
IMPBFFEXPORT void decay_rescale_w_bg (double *fit, double *decay, double *e_sq, double bg, double *scale, int start, int stop)
 Scale model function to the data (with weights and background)
 
IMPBFFEXPORT void decay_fconv (double *fit, double *x, double *lamp, int numexp, int start, int stop, double dt=0.05)
 Convolve lifetime spectrum with instrument response (fast convolution, low repetition rate)
 
IMPBFFEXPORT void decay_fconv_avx (double *fit, double *x, double *lamp, int numexp, int start, int stop, double dt=0.05)
 Convolve lifetime spectrum with instrument response (fast convolution, AVX optimized for large lifetime spectra)
 
IMPBFFEXPORT void decay_fconv_per (double *fit, double *x, double *lamp, int numexp, int start, int stop, int n_points, double period, double dt=0.05)
 Convolve lifetime spectrum with instrument response (fast convolution, high repetition rate)
 
IMPBFFEXPORT void decay_fconv_per_avx (double *fit, double *x, double *lamp, int numexp, int start, int stop, int n_points, double period, double dt=0.05)
 Convolve lifetime spectrum with instrument response (fast convolution, high repetition rate), AVX optimized version.
 
IMPBFFEXPORT void decay_fconv_per_cs (double *fit, double *x, double *lamp, int numexp, int stop, int n_points, double period, int conv_stop, double dt)
 Convolve lifetime spectrum - fast convolution, high repetition rate, with convolution stop.
 
IMPBFFEXPORT void decay_fconv_ref (double *fit, double *x, double *lamp, int numexp, int start, int stop, double tauref, double dt=0.05)
 Convolve lifetime spectrum - fast convolution with reference compound decay.
 
IMPBFFEXPORT void decay_sconv (double *fit, double *p, double *lamp, int start, int stop)
 Convolve fluorescence decay curve with irf.
 
IMPBFFEXPORT void decay_shift_lamp (double *lampsh, double *lamp, double ts, int n_points, double out_value=0.0)
 shift instrument response function
 
IMPBFFEXPORT void decay_add_pile_up_to_model (double *model, int n_model, double *data, int n_data, double repetition_rate, double instrument_dead_time, double measurement_time, std::string pile_up_model="coates", int start=0, int stop=-1)
 Add a pile-up distortion to the model function.
 
IMPBFFEXPORT void discriminate_small_amplitudes (double *lifetime_spectrum, int n_lifetime_spectrum, double amplitude_threshold)
 
IMPBFFEXPORT void decay_fconv_per_cs_time_axis (double *model, int n_model, double *time_axis, int n_time_axis, double *irf, int n_irf, double *lifetime_spectrum, int n_lifetime_spectrum, int convolution_start=0, int convolution_stop=-1, double period=100.0)
 
IMPBFFEXPORT void decay_fconv_cs_time_axis (double *inplace_output, int n_output, double *time_axis, int n_time_axis, double *irf, int n_irf, double *lifetime_spectrum, int n_lifetime_spectrum, int convolution_start=0, int convolution_stop=-1)
 

Function Documentation

◆ decay_add_pile_up_to_model()

IMPBFFEXPORT void decay_add_pile_up_to_model ( double *  model,
int  n_model,
double *  data,
int  n_data,
double  repetition_rate,
double  instrument_dead_time,
double  measurement_time,
std::string  pile_up_model = "coates",
int  start = 0,
int  stop = -1 
)

Add a pile-up distortion to the model function.

This function adds a pile up distortion to a model fluorescence decay. The model used to compute the pile-up distortion follows the description of Coates (1968, eq. 2 and eq. 4)

Reference: Coates, P.: The correction for photonpile-up in the measurement of radiative lifetimes. J. Phys. E: Sci. Instrum. 1(8), 878–879 (1968)

Parameters
model[in,out]The array containing the model function
n_model[in]Number of elements in the model array
data[in]The array containing the experimental decay
n_data[in]number of elements in experimental decay
repetition_rate[in]The repetition-rate (excitation rate) in MHz
instrument_dead_time[in]The overall dead-time of the detection system in nanoseconds
measurement_time[in]The measurement time in seconds
pile_up_model[in]The model used to compute the pile up distortion.
startStart index for pile up
stopStop index for pile up (default "coates")

◆ decay_fconv()

IMPBFFEXPORT void decay_fconv ( double *  fit,
double *  x,
double *  lamp,
int  numexp,
int  start,
int  stop,
double  dt = 0.05 
)

Convolve lifetime spectrum with instrument response (fast convolution, low repetition rate)

This function computes the convolution of a lifetime spectrum (a set of lifetimes with corresponding amplitudes) with an instrument response function (irf). This function does not consider periodic excitation and is suited for experiments at low repetition rate.

Parameters
fit[out]model function. The convoluted decay is written to this array
x[in]lifetime spectrum (amplitude1, lifetime1, amplitude2, lifetime2, ...)
lamp[in]instrument response function
numexp[in]number of fluorescence lifetimes
start[in]start micro time index for convolution (not used)
stop[in]stop micro time index for convolution.
dt[in]time difference between two micro time channels

◆ decay_fconv_avx()

IMPBFFEXPORT void decay_fconv_avx ( double *  fit,
double *  x,
double *  lamp,
int  numexp,
int  start,
int  stop,
double  dt = 0.05 
)

Convolve lifetime spectrum with instrument response (fast convolution, AVX optimized for large lifetime spectra)

This function is a modification of fconv for large lifetime spectra. The lifetime spectrum is processed by AVX intrinsics. Four lifetimes are convolved at once. Spectra with lifetimes that are not multiple of four are zero padded.

Parameters
fit[out]model function. The convoluted decay is written to this array
x[in]lifetime spectrum (amplitude1, lifetime1, amplitude2, lifetime2, ...)
lamp[in]instrument response function
numexp[in]number of fluorescence lifetimes
start[in]start micro time index for convolution (not used)
stop[in]stop micro time index for convolution.
n_points[in]number of points in the lifetime spectrum
dt[in]time difference between two micro time channels

◆ decay_fconv_cs_time_axis()

IMPBFFEXPORT void decay_fconv_cs_time_axis ( double *  inplace_output,
int  n_output,
double *  time_axis,
int  n_time_axis,
double *  irf,
int  n_irf,
double *  lifetime_spectrum,
int  n_lifetime_spectrum,
int  convolution_start = 0,
int  convolution_stop = -1 
)

Compute the fluorescence decay for a lifetime spectrum and a instrument response function.

Fills the pre-allocated output array output_decay with a fluorescence intensity decay defined by a set of fluorescence lifetimes defined by the parameter lifetime_handler. The fluorescence decay will be convolved (non-periodically) with an instrumental response function that is defined by instrument_response_function.

This function calculates a fluorescence intensity model_decay that is convolved with an instrument response function (IRF). The fluorescence intensity model_decay is specified by its fluorescence lifetime spectrum, i.e., an interleaved array containing fluorescence lifetimes with corresponding amplitudes.

This convolution works also with uneven spaced time axes.

Parameters
inplace_output[in,out]Inplace output array that is filled with the values of the computed fluorescence intensity decay model
n_output[in]Number of elements in the output array
time_axis[in]the time-axis of the model_decay
n_time_axis[in]length of the time axis
irf[in]the instrument response function array
n_irf[in]length of the instrument response function array
lifetime_spectrum[in]Interleaved array of amplitudes and fluorescence lifetimes of the form (amplitude, lifetime, amplitude, lifetime, ...)
n_lifetime_spectrum[in]number of elements in the lifetime spectrum
convolution_start[in]Start channel of convolution (position in array of IRF)
convolution_stop[in]convolution stop channel (the index on the time-axis)
use_amplitude_threshold[in]If this value is True (default False) fluorescence lifetimes in the lifetime spectrum which have an amplitude with an absolute value of that is smaller than amplitude_threshold are not omitted in the convolution.
amplitude_threshold[in]Threshold value for the amplitudes

◆ decay_fconv_per()

IMPBFFEXPORT void decay_fconv_per ( double *  fit,
double *  x,
double *  lamp,
int  numexp,
int  start,
int  stop,
int  n_points,
double  period,
double  dt = 0.05 
)

Convolve lifetime spectrum with instrument response (fast convolution, high repetition rate)

This function computes the convolution of a lifetime spectrum (a set of lifetimes with corresponding amplitudes) with an instrument response function (irf). This function considers periodic excitation and is suited for experiments at high repetition rate.

Parameters
fit[out]model function. The convoluted decay is written to this array
x[in]lifetime spectrum (amplitude1, lifetime1, amplitude2, lifetime2, ...)
lamp[in]instrument response function
numexp[in]number of fluorescence lifetimes
start[in]start micro time index for convolution (not used)
stop[in]stop micro time index for convolution.
n_pointsnumber of points in the model function.
periodexcitation period in units of the fluorescence lifetimes (typically nanoseconds)
dt[in]time difference between two micro time channels

◆ decay_fconv_per_avx()

IMPBFFEXPORT void decay_fconv_per_avx ( double *  fit,
double *  x,
double *  lamp,
int  numexp,
int  start,
int  stop,
int  n_points,
double  period,
double  dt = 0.05 
)

Convolve lifetime spectrum with instrument response (fast convolution, high repetition rate), AVX optimized version.

This function computes the convolution of a lifetime spectrum (a set of lifetimes with corresponding amplitudes) with an instrument response function (irf). This function considers periodic excitation and is suited for experiments at high repetition rate. It is an AVX optimized version.

Parameters
fit[out]model function. The convoluted decay is written to this array
x[in]lifetime spectrum (amplitude1, lifetime1, amplitude2, lifetime2, ...)
lamp[in]instrument response function
numexp[in]number of fluorescence lifetimes
start[in]start micro time index for convolution (not used)
stop[in]stop micro time index for convolution.
n_pointsnumber of points in the model function.
periodexcitation period in units of the fluorescence lifetimes (typically nanoseconds)
dt[in]time difference between two micro time channels

◆ decay_fconv_per_cs()

IMPBFFEXPORT void decay_fconv_per_cs ( double *  fit,
double *  x,
double *  lamp,
int  numexp,
int  stop,
int  n_points,
double  period,
int  conv_stop,
double  dt 
)

Convolve lifetime spectrum - fast convolution, high repetition rate, with convolution stop.

This function performs fast convolution of a lifetime spectrum with an instrument response function. The convolution is stopped at a specified micro time index.

Parameters
fit[out]Model function. The convoluted decay is written to this array.
x[in]Lifetime spectrum (amplitude1, lifetime1, amplitude2, lifetime2, ...).
lamp[in]Instrument response function.
numexp[in]Number of fluorescence lifetimes.
stop[in]Stop micro time index for convolution.
n_pointsNumber of points in the model function.
periodExcitation period in units of the fluorescence lifetimes (typically nanoseconds).
conv_stopConvolution stop micro channel number.
dt[in]Time difference between two micro time channels.

◆ decay_fconv_per_cs_time_axis()

IMPBFFEXPORT void decay_fconv_per_cs_time_axis ( double *  model,
int  n_model,
double *  time_axis,
int  n_time_axis,
double *  irf,
int  n_irf,
double *  lifetime_spectrum,
int  n_lifetime_spectrum,
int  convolution_start = 0,
int  convolution_stop = -1,
double  period = 100.0 
)

Compute the fluorescence decay for a lifetime spectrum and an instrument response function considering periodic excitation.

Fills the pre-allocated output array output_decay with a fluorescence intensity decay defined by a set of fluorescence lifetimes defined by the parameter lifetime_handler. The fluorescence decay will be convolved (non-periodically) with an instrumental response function that is defined by instrument_response_function.

This function calculates a fluorescence intensity model_decay that is convolved with an instrument response function (IRF). The fluorescence intensity model_decay is specified by its fluorescence lifetime spectrum, i.e., an interleaved array containing fluorescence lifetimes with corresponding amplitudes.

This convolution only works with evenly linear spaced time axes.

Parameters
inplace_output[in,out]Inplace output array that is filled with the values of the computed fluorescence intensity decay model
n_output[in]Number of elements in the output array
time_axis[in]the time-axis of the model_decay
n_time_axis[in]length of the time axis
irf[in]the instrument response function array
n_irf[in]length of the instrument response function array
lifetime_spectrum[in]Interleaved array of amplitudes and fluorescence lifetimes of the form (amplitude, lifetime, amplitude, lifetime, ...)
n_lifetime_spectrum[in]number of elements in the lifetime spectrum
convolution_start[in]Start channel of convolution (position in array of IRF)
convolution_stop[in]convolution stop channel (the index on the time-axis)
periodPeriod of repetition in units of the lifetime (usually, nano-seconds)

◆ decay_fconv_ref()

IMPBFFEXPORT void decay_fconv_ref ( double *  fit,
double *  x,
double *  lamp,
int  numexp,
int  start,
int  stop,
double  tauref,
double  dt = 0.05 
)

Convolve lifetime spectrum - fast convolution with reference compound decay.

This function convolves a set of fluorescence lifetimes and associated amplitudes with an instrument response function. The provided amplitudes are scaled prior to the convolution by area using a reference fluorescence lifetime. The amplitudes are computed as:

amplitude_corrected = a * (1 / tauref - 1 / tau)

where a and tau are the provided amplitudes.

Parameters
fit[out]Model function. The convoluted decay is written to this array.
x[in]Lifetime spectrum (amplitude1, lifetime1, amplitude2, lifetime2, ...).
lamp[in]Instrument response function.
numexp[in]Number of fluorescence lifetimes.
start[in]Start micro time index for convolution (not used).
stop[in]Stop micro time index for convolution.
taurefA reference lifetime used to rescale the amplitudes of the fluorescence lifetime spectrum.
dt[in]Time difference between two micro time channels.

◆ decay_rescale()

IMPBFFEXPORT void decay_rescale ( double *  fit,
double *  decay,
double *  scale,
int  start,
int  stop 
)

Scale model function to the data (old version).

This function rescales the model function (fit) to the data by counting the number of photons between a start and a stop micro time counting channel. The model function is scaled to match the data by area. This rescaling function does not consider the noise in the data.

Parameters
fitThe model function that is scaled (modified in-place).
decayThe experimental data to which the model function is scaled.
scaleThe scaling parameter (the factor) by which the model function is multiplied.
startThe start micro time channel.
stopThe stop micro time channel.

◆ decay_rescale_w()

IMPBFFEXPORT void decay_rescale_w ( double *  fit,
double *  decay,
double *  w_sq,
double *  scale,
int  start,
int  stop 
)

Scale model function to the data (with weights).

This function rescales the model function (fit) to the data by counting the number of photons between a start and a stop micro time counting channel. The model function is scaled to match the data by area, considering the noise of the data. The scaling factor is computed by:

\[
\text{scale} = \frac{\sum \left(\frac{{\text{fit}} \cdot \text{decay}}}{{w^2}}\right)}{\sum \left(\frac{{\text{fit}}^2}}{{w^2}}\right)}
\]

Parameters
fitThe model function that is scaled (modified in-place).
decayThe experimental data to which the model function is scaled.
w_sqThe squared weights of the data.
scaleThe scaling parameter (the factor) by which the model function is multiplied.
startThe start micro time channel.
stopThe stop micro time channel.

◆ decay_rescale_w_bg()

IMPBFFEXPORT void decay_rescale_w_bg ( double *  fit,
double *  decay,
double *  e_sq,
double  bg,
double *  scale,
int  start,
int  stop 
)

Scale model function to the data (with weights and background)

This function scales the model function (fit) to the data by the number of photons between a start and a stop micro time counting channel. The number of photons between start and stop are counted and the model function is scaled to match the data by area considering the noise of the data and a constant offset of the data.

scale = sum(fit*(decay-bg)/w^2)/sum(fit^2/w^2)

Parameters
fit[in,out]model function that is scaled (modified in-place)
decay[in]the experimental data to which the model function is scaled
w_sq[in]squared weights of the data.
bg[in]constant background of the data
scale[out]the scaling parameter (the factor) by which the model function is multiplied.
start[in]The start micro time channel
stop[in]The stop micro time channel

◆ decay_sconv()

IMPBFFEXPORT void decay_sconv ( double *  fit,
double *  p,
double *  lamp,
int  start,
int  stop 
)

Convolve fluorescence decay curve with irf.

This function computes a convolved model function for a fluorescence decay curve.

Parameters
fitconvolved model function
pmodel function before convolution - fluorescence decay curve
lampinstrument response function
startstart index of the convolution
stopstop index of the convolution

◆ decay_shift_lamp()

IMPBFFEXPORT void decay_shift_lamp ( double *  lampsh,
double *  lamp,
double  ts,
int  n_points,
double  out_value = 0.0 
)

shift instrument response function

Parameters
lampsh
lamp
ts
n_points
out_valuethe value of the shifted response function outside of the valid indices

◆ discriminate_small_amplitudes()

IMPBFFEXPORT void discriminate_small_amplitudes ( double *  lifetime_spectrum,
int  n_lifetime_spectrum,
double  amplitude_threshold 
)

Threshold amplitudes

Amplitudes with absolute values smaller than the specified threshold are set to zero.

Parameters
lifetime_spectruminterleaved lifetime spectrum (amplitude, lifetime)
n_lifetime_spectrumnumber of elements in lifetime spectrum
amplitude_threshold

◆ mod_p()

IMPBFF_BEGIN_NAMESPACE int mod_p ( int  a,
int  n 
)
inline

Compute the modulo of a number with respect to a positive integer.

This function computes the modulo of a number 'a' with respect to a positive integer 'n'. The result is always in the range from -1 to n - 1.

-1 -> n - 1, -2 -> n - 2,

Parameters
aThe number to compute the modulo for.
nThe positive integer to compute the modulo with respect to.
Returns
The modulo of 'a' with respect to 'n'.